FPGA Technology and Software IP in Power Electronics Applications

Monitoring, Fault Diagnosis and Increasing the Lifetime & Reliability of PV Systems

Solar panel on a red roof reflecting the sun and the cloudless blue sky

Have you checked the November 2015 issue of IEEE IES Transactions on Industrial Electronics ? There is a special section on the precise topic of “Monitoring, Prognosis and Techniques for Increasing the Lifetime & Reliability of Photovoltaic Systems“. Here are the titles of the seven articles selected for this special section:

1- “Operation of cascaded H-bridge multilevel converters for large-scale photovoltaic power plants under bridge failures”

2- “Online two-section PV array fault diagnosis with optimized voltage sensor locations”

3- “Photovoltaic systems reliability improvement by real-time FPGA-based switch failure diagnosis and fault tolerant DC-DC converter”

4- “Model-based degradation analysis of photovoltaic modules through series resistance estimation”

5- “Dual-Kalman-filter-based identification and real-time optimization of PV systems”

6- “A survey on mismatching and aging of PV modules: The closed loop”

7- “Innovative automated control system for PV fields inspection and remote control”

In the context of the rise of PV systems for solar power generation and also the Internet-of-things (IoT), the timing for this publication is very good. This is exactly the type of information that needs to be generated by controllers (and sent to operators via IoT) to maximize energy-efficiency of PV systems AND also reduce any chance of unplanified downtime leading to loss of revenues.

Internet-of-things (IoT) interface for electrical equipment manufacturers

Smart appliances in network. Concept for Internet of Things showing many different connection between device

You certainly know already a lots of things about IoT (if not, read this or this), but do you know about the Initial State’s IoT platform ? Briefly, that’s a web-based platform (SaaS) to which you can stream data out from your electronics devices. The platform is then going to store this data for you and enable you to visualize/report it quite nicely, always through your preferred web browser.

They have had quite success so far in the hobby/consumer space, enabling to easily pipe data out of a Raspberry PI for all sorts of cool applications. The need to pipe out informations from controllers is everywhere, especially in industrial electronics (that’s Industrial IoT, IIoT). Hence, this type of feature is a perfect fit with Alizem embedded motor control software products enabling to pipe out informations regarding electric motor’s states: temperature, currents, rotor position, speed, etc.

For those reasons, I am pleased to announce the release of Alizem IoT Interface software that’s meant to connect new and existing electrical equipment products to Initial State’s IoT platform. This new product is now available in two versions: standalone (great for existing products) and integrated into Alizem embedded motor control software (ideal for new products). Both versions include a reference design based on Altera MAX10 FPGA Development kit.

For electrical equipement manufacturers, that’s a great way to integrate IoT features easily and quickly and also to:

  • Accelerate product development by detection bugs early
  • Easily share data between development teams working at different locations
  • Remotely monitor critical performance data such as power consumption, load motion profiles, current shape and temperature
  • Build new value-added services by bundling their electrical equipment products with SaaS based monitoring services and provide peace-of-mind to your customers by having them access to all their equipment operation data

For more information, please visit www.alizem.com/iot and/or feel free to contact me over this blog.

Best Regards, Marc.


This blog has been originally published here, on LinkedIn.

How to design a custom electric motor drive system using COTS components

If you are an electric motor drive designer, you might be interested in getting my brand new eBook:

alizem_ebook_200kThis eBook provides guidelines to make the process of designing a custom electric motor drive faster and easier. Hence, whether you are a project manager, a system / mechanical / electrical / software engineer, you will find in this document relevant informations to help you achieve your objectives.

TABLE OF CONTENT
1- Why would you design a custom electric motor drive system ?
2- Reasons to use Commercial Off-the-Shelf (COTS) components
3- Anatomy of an electric motor drive system and COTS component selection
4- Bottleneck is software: how to plan the software development ?
4.1 – Application Software
4.2 – Commodity Interfaces Software
4.3 – Motor Control Software
5- Embedded Motor Control Software: Expertise needed !
5.1 – Developping from scratch
5.2 – Developping from reference design
5.3 – Developping from 3rd-party software
6- Development of a custom electric motor drive: A 5 steps process
6.1 – Step #1: Requirements
6.2 – Step #2: Design
6.3 – Step #3: Prototype
6.4 – Step #4: Product development
6.5 – Step #5: Production
7- How can Alizem help you achieve your business and technical objectives ?
Format: Powerpoint presentation, 64 pages.

You can download a FREE copy on Alizem website, just click here !

Impacts of an embedded software bug in power electronics applications

We all know software is a difficult skill to master and there are tremendous differences in developping software for:

  • PC/desktop applications
  • mobile/tablet applications
  • … and real-time embedded control applications such as power electronics applications

While in all cases a software bug may lead to important financial and human losses (directly or indirectly), the case of embedded software for power electronics application is special since it is meant to directly control the flow of energy from a source (battery, solar, etc.) to a load (electric motor, power network, etc.), not a flow of informations/signals/data is in a typical software application.

Impact #1: System component destruction

It means that a software bug may lead in the bad management of the flow of energy which can itself cause the destruction of components such as power stage (“shoot-through” faults), electric motor (“overcurrent” faults) or electric motor load (pump damage caused by cavitation for example).

impact of a bug power electronics software

Of course, proper installation of electrical equipement protection (i.e. fuses) can prevent most of the damage that may happen on the system components in case of a bug (overcurrent), but not all of them. For example, noise in a transducer may lead to torque ripple which may lead over time into electric motor bearing problems. This is the whole idea of electric motor “condition monitoring”, i.e. tracking over time the state of healt of the motor in order to : (1) detect faults (is there a fault, what component ?) and (2) diagnose faults (what is the cause of the fault, how severe the fault is). Those further interested in the subject may read this article.

Impact #2: Unique embedded motor control software development process

Hence, the development of motor control software needs not only software programming and digital signal processing skills, but it also needs deep “domain knowledge” experience related to power electronics, electric motors, transducers and the type of application where the software is going to run (in a home appliance or in an electric vehicle ?). More on this in a previous blog article. This point is not unique to power electronics software, the same could be same for embedded computer vision software (i.e. smart camera).

However, since motor control software bug may lead to component destruction, this has an impact on how the motor control software development and testing process is going to be made. Blowing a power stage is expensive and takes time to repair : it means you cannot afford to simply “develop some code and test” just like you would while developping a PC/mobile software application. It means you need to be sure that when you are going to turn the power switch on, you are not going to destroy your system.

How can you do that ? Well, you know my pitch on this.

FPGA-based Motor Control: “The Brains behind the Motion Controller” Webinar

design_newsaltera_may30

I will be giving a webinar on the topic of FPGA-based Motor Control on May 30th 2013. Make sure to register by click this link.

Meanwhile, if you have any particular question you would like to be addressed during the Q&A session, feel free to contact me.

I look forward to talk with you on May 30th !

NOTE (June 3rd 2013): You can now here the webinar archive by clicking here.

Why developing power electronics embedded software is so hard ?

Here is a figure I did use in a recent presentation explaining why power electronics software is so hard to develop:

Hence, in order to create quality embedded software for power electronics applications, one must have advanced knowledge on :

  • the load (motor type, dynamics, etc),
  • the electrical source (topology of the power converter, devices technologies, etc.),
  • the electronics, i.e. the device on which the software is going to run and also transducers that are going to interface with the device and the system,
  • and embedded software development, of course.
Each of those topic is in itself a speciality and represent very different branches and cultures of electrical engineering (EE), i.e. ‘power’ vs ‘software’. Those cultures are so different that the following situation arises:
  • the ‘power engineer’ doesn’t know about software development and often minimize its importance (this most of the time leads to bad software development practices which makes the situation worse),
  • the ‘software engineer’ doesn’t know about power applications since this is way out of his traditionnal type of applications (web, internet, applicative) and neglect to consider that he is working with energy (i.e.  error is not leading to a blue screen but to a damaged system or to personel injury).
In a recent interview, I made an analogy with this situation naming embedded software for power electronics applications as the triathlon of electrical engineering. The best triathlete is not the perfect swimmer, the perfect cyclist or the perfect runner: he is the best at maximizing performance in those three sports.
It is the same with embedded software for power electronics applications and this is why it is so hard.

FPGA-based Custom Motor Drives Design: The Role of 3rd-party System-Level IP

For those who didn’t have the chance to be at the annual IEEE Industrial Electronics Conference (IECON) 2012 conference in Montréal, Qc last week, you may have a look at the slides of my presentation :

I take this opportunity to thank the organizers of the Industry Forum – Michael Condry and Richard Grisel  – for their kind invitation to participate at this conference.

FPGA-based Controllers – IEEE Industrial Electronics Mazagine March 2011

Another great ‘survey’ article has been written by Dr. Éric Monmasson and his team and published in the IEEE Industrial Electronics Magazine of March 2011 and titled ‘FPGA-based Controllers – Different Perspectives of Power Electronics and Drives Applications’. Here’s the abstract of their article:

This article presents the benefits of using field-programmable gate array (FPGA)-based controllers for power electronics and drive applications. For this purpose, an algorithm perspective is first proposed, where it is stated that, depending on the intrinsic parallelism properties as well as level of complexity, it makes sense to implement each control algorithm on a specific hardware and/or software architecture to get the best performances in terms of execution time or the best ratio performance versus cost. Then, an application perspective is proposed where the constraints specifically linked to the control of power converters are discussed.

You may access it here on the IEEE Xplore.

FPGA-based motor control – A Review of 2010

This time of the year is a great moment to take a few steps back and observe what the last year has been made of and to speculate on what we can expect in 2011. We already know that 2010 has been a very important year for FPGAs with 47% growth in sales (check Kevin Morris’ recap article ‘Banner Year: 2010 in FPGAs in Review’). With no surprise, 2010 has also been a great year for FPGA-based motor control / power electronics apps, here are the highlights:

FPGA vendors and motor control kits

After Altera released 2 motor control kits in 2008 (Arrow’s MotionFire and EBV’s Falcon Eye), Xilinx and Microsemi have both announced the release of a new FPGA-based motor control kit. Actel/Microsemi did initially demo theirs at ESC in April 2010 while Xilinx have announced their new Targeted Design Platform at SPS/IPC/DRIVES 2010 conference.

At the same conference, Altera has announced new EBV’s three-level inverter demo for motor control and solar power conversion applications. It is interesting to see such demo featuring advanced inverter topologies (i.e. something different than usual two-level inverter) in which FPGA can uniquely differentiate and provide application’s improvement (three-level inverter reduce time-harmonics losses in the converter and the load but require more computation than conventional two-level inverter, more in this article showing 44% power loss reduction in wind power conversion apps).

It is worth mentionning that National Instruments – with their FPGA-based CompactRIO platform – has made noticeable appearance at the EETimes Virtual Conference on Motor Control (having Altera & Texas Instrument as Gold sponsors) with NI’s VP of Industrial and Embedded Product Lines as keynote speaker.

Alizem COTS Motor Control IP

In May 2010, Alizem has released its COTS Motor Control IP for Pump and Fan applications for Altera FPGAs. It is the first application-specific COTS Motor Control IP to be designed and sold as a plug-and-play virtual chip and meant to take advantage of FPGA technical capabilities to increase application performance and to be used by non-motor control and non-FPGA experts (see this blog articles article Motor Control IC vs Motor Control IP and also Why FPGAs are better than DSP for Motor Control ?). This IP has been demoed at ECCE2010 conference and has been the object of an article published by EETimes Programmable Logic Designline.

Some important articles

In August, Motion Control Association published an article of FPGA Motor Control (“Playing the field“) featuring Alizem, Xilinx and National Instruments. A great article on FPGA-based motor control has also been published by Xilinx (“Creating a Greener Future for Industrial Motor Control“) in october.

FPGA-as-a-platform

I think one of the biggest event in 2010 has been one that’s impacting not only Motor Control but any high-level embedded system applications which is the paradigm shift toward “FPGA-as-a-platform”, that is considering the FPGA not as a chip (like a DSP or MCU) both rather as a component (IP) integration platform (like a “software” PCB). Of course, this idea is not new (i.e. that’s not the first year that we are speaking about the concept of system-on-chip), but many important event have happened in 2010 that’s making it a reality.

One of them is Cadence’s EDA 360 manifesto (that’s directed to the whole electronic industry not only FPGA SoC design) which is about “apps-driven” design, i.e. making the application’s requirements at the center of system design instead of the current hardware-first paradigm. Apple’s iPhone has been used by many people in the industry as a concrete example of this new approach to system-level design (Steve Leibson, Daniel Nenni, Kevin Morris, Jim Turley, Brian Bailey and many others).

This shift in design approach is opening a system-level IP/apps era providing new levels of productivity to the system designer (Altera has already upgraded its own tools in that direction with Qsys). That’s exactly what’s needed in complex applications such as motor control where designers are still loosing so much time learning tools and demystiyfing motor control while they could spend this time working on their true product’s differentiation (if you have doubts about this, attend a motor control webinar given by any motor control IC vendor).

Is anything important missing ?

Please let me know. Meanwhile, I wish you success in 2011 in your FPGA-based power electronics applications design ! Thanks for your interest in reading this blog !

FPGAs and Plug-in Hybrid Vehicles

During the summer, I have had the chance to drive during one week one of the five Toyota Plug-in Hybrid currently under test in Canada. Those vehicles are part of a experimental project involving Toyota and canadian universities, among them Université Laval and its power electronics lab LEEPCI (my former lab). Click here to see the public announcement made with Toyota during the summer.

The vehicle is actually working very fine and it is a real pleasure to drive. For those interested, I did use only 3L of gas for normal use during the week (around 80km) which is very energy efficient! Click on the figure below to see more pictures of the car :

Where’s the link with this blog ? EV are obviously heavy power electronics applications by being used to convert energy stored in the batteries to the motor and vice-versa (motor to batteries while braking). Where’s the link with FPGAs? You may be interested to read this SAE Report written by Delphi people in 2006 and titled “FPGA considerations for Automotive applications”. According to its authors,

The complexity of automotive products will continue to increase, even as the pressure to decrease the development cycle, decrease cost, and increase quality and reliability mounts. FPGA usage to meet application needs will continue to grow as a means of reducing cycle time and development costs. Understanding and developing all aspects of FPGA manufacturing, design, implementation, application usage and performance can address the quality and reliability aspects of using FPGAs as product solutions. A low unit cost should not be the only major driving factor in choosing an FPGA. It has been shown that there are other items that can significantly add to unit cost based on the design methodology used for the implementation and verification of an FPGA. The complexity and challenge of implementing an FPGA device will erode any advantages of a traditional design flow. FPGA development requires discipline in assuring adherence to robust practices.

Briefly, they mean to have a look to the total cost of ownership (TCO) against other IC solutions.