Embedded Software IP & Technology Transfer in Power Electronics Applications

Embedded software: sourcing specialized interfaces

When designing an electrical equipement product, you typically have the following sub-systems to design and integrate together:

  1. mechanical (a box)
  2. electrical (the wires to inteface with grid + load and power electronics)
  3. the electronics (driving the power electronics + human-machine interface + communication interface)
  4. and the software that runs on the electronics.

For (1,2,3), there are a lot of standard/COTS products available so that you can quickly have a prototype ready using those components (while there is still innovation going on in each of these areas). However, for (4), this is less obvious and knowing that embedded software costs amount for a large part of electronic product design (>50% according to PwC), it has to be carefully planned.

Splitting software into components

Software inside an electronic product can be split into 3 important components: (1) commodity interfaces, (2) specialized interfaces and (3) application software (that may or may not run over an OS) – see image below (taken from my ebook on custom electric motor drive design).

Commodity interfaces are typically packaged with your chip bundle of tools or available at a very low price, unless you are using something that’s not standard. Applications software is the software that is specific to your product (a robot, a drone, a medical device, etc.), i.e. “your sauce”. Then you have the “specialized interfaces”: middleware/drivers meant to work with a “complex” peripheral like a power stage or a camera. Those drivers typically contains very “domain-specific” functions that need advanced knowledge and expertise to be developped.

This is where it becomes tricky because you need to source those interfaces from somewhere: i.e. (1) develop them ‘in-house’ or (2) get them from a third party IP provider. The sourcing of the specialized interface is influenced by available time, budget, talent and also the type of product you are developping:

  • In house development of specialized interfaces can be an option when you have the expertise and when the product value is highly defined by this interface, e.g. a standard industrial motor drive.
  • Third party IP sourcing of specialized interfaced can be an option when your firm do not have this specific expertise in house and when the product is not highly defined by this interface, e.g. a medical device equipment.

Either option may also be influenced by the pressure on anticipated costs/profits and time of development of your product: the higher the pressure is on costs and time of development, the higher the benefits of leveraging third-party IP sourcing (if available and making financial sense against in-house development).

However, the lines get blurred when ones uses a “reference design”. Those reference designs typically come from a third-party (chip vendor) and are a great start for a project. However, it is important to know that a reference design is not an IP: you need domain expertise to use them otherwise you may get troubles, especially in power electronics applications. This topic is so important that I will make it stand as a future blog post shortly. Stay tuned!

Moving on further into embedded software intellectual property

Some of you may have noticed, I have changed the title of this blog from "FPGA Technology and Embedded Software IP in Power Electronics Apps" to "Embedded Software IP & Technology Transfer in Power Electronics Apps" (check the top of the screen). … [Continue reading]

ICIT2017 Next March 2017 in Toronto (Canada): Call for Paper

Click here to access ICIT2017 website Paper Submission: Prospective authors are invited to electronically submit regular papers of their work in English. Accepted and presented papers will be published in the conference proceedings, and submitted … [Continue reading]

New ebook: Step-by-step design of a basic embedded system using an Intel MAX10 ® FPGA

Are you new to Intel FPGA-based embedded system design? Make sure to download my new ebook: it contains all steps to design a basic FPGA-based embedded system from scratch including a (1) NIOS II processor-centric system in Qsys, (2) MAX10 FPGA pins … [Continue reading]

Power electronics innovations 2015 Review – M&A, IoT, GaN

2015 has been a big year for power electronics innovations, both from a technical and a business point of view. Of course, Elon Musk has been making the news every week regarding Tesla or other new home battery project closing the gap between its … [Continue reading]

Monitoring, Fault Diagnosis and Increasing the Lifetime & Reliability of PV Systems

Have you checked the November 2015 issue of IEEE IES Transactions on Industrial Electronics ? There is a special section on the precise topic of "Monitoring, Prognosis and Techniques for Increasing the Lifetime & Reliability of Photovoltaic … [Continue reading]

Internet-of-things (IoT) interface for electrical equipment manufacturers

You certainly know already a lots of things about IoT (if not, read this or this), but do you know about the Initial State's IoT platform ? Briefly, that's a web-based platform (SaaS) to which you can stream data out from your electronics devices. … [Continue reading]

FPGA and Embedded Motor Control Software IP – A Review of 2014

Dear reader, thank you for reading my blog. I take this opportunity to wish you an happy new year 2015, fulfilled with great new designs and hopefully as few bugs as possible. Like previous years, I will take some time to review - from my perspective … [Continue reading]

FPGAs and power electronics in the IEEE TII of 11/2014

A new issue of the IEEE Transactions on Industrial Informatics is now available and here are the articles related to FPGA and power electronics/control applications: FPGA Implementation of Model Predictive Control With Constant Switching Frequency … [Continue reading]

How to design a custom electric motor drive system using COTS components

If you are an electric motor drive designer, you might be interested in getting my brand new eBook: This eBook provides guidelines to make the process of designing a custom electric motor drive faster and easier. Hence, whether you are a project … [Continue reading]